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Motivation

Cirrhosis

slows the normal flow of blood through the liver, thus increasing
pressure in the vein that brings blood from the intestines and spleen to the
liver.

Prothrombin index is an indirect marker of severe liver condition.
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Motivation

(a) (b)

Figure: (a) Prothrombin index for the following times, the lines represents the median
trajectory. (b) Empirical survival probability (Kaplan-Meier) for Prednisone
(arm = 1) versus Placebo
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Henderson, Diggle and Dobson (2000)
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Ibrahim,Chu and Chen (2010)
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Our Propost
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Information

N individuals followed-up and measured over a time interval [0, τ);

Ti, i = 1, . . . ,N, for the ith individual;

Ti = min(T∗i ,Ci), where Ci denotes the censure time and T∗i denotes the
true survival time;

di represent an indicator of right censoring for the ith;

yij, on individuals i followed up in J determined interviews denoted
sij, j = 1, . . . , J;

X covariates.
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Survival process

Ti | ξi ∼ PE[hk(· | ξi), τ ],hk = (h1k, . . . , hNk);

hik(t | ξi) = h0k(t) exp{X′1iβ1 + ξ′iα}.
(1)
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Baseline

Figure: Piecewise baseline
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Baseline: Two alternatives

Consider a Markovian structure for h0k|h0(k−1) as

1) Gamma Process, based on Nieto-Barajas (2002).

2) Dependence of the log h0k over time based on Gamerman (1991)
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Longitudinal sub-model

yij ∼ Ef [ηij, φ], i, . . . ,N;

g(E[yij|ηij, φ]) = λij, j, . . . , J;

λij = F′iθj + vi, vi ∼ N (0,V);

θj = G(δj)θj−1 + wj,wj ∼ N (0,W);

θ0|D0 ∼ N (m0,C0). (2)
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Advantages

ξ : filtered information from the longitudinal process;

I λi, j = 1, . . . , J;
I λij, any j;
I Quantile(λi).

K : natural choice based on number of longitudinal measurements

Dynamic model provides natural framework for data forecast→
prediction of survival probabilities.
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Inference: MCMC methods

Likelihood
LD(Θ) = [ti, di | ξi][yi | ξi]

[ti | ξi] =
∏K

k=1

{
hik(t)dik Sik(t)

}
, where the term dik = diI(τk−1 < t ≤ τk).

[yi | ξi] =
∏J

j=1 b(yij, ψ) exp{ψ(yijηij − a(ηij))},

Prior
To complete the Bayesian inference specification, prior distributions π(·)
must be set for all unknown quantities in the model.

Posterior

π(Θ|x) ∝ LD(Θ)π(Θ),
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Simulation study: n= 50,100; K= 3,5,7

Hierarchical dynamic joint using ξij as a bridge function.
Input: N, J, mean 2 for the right censoring, F,G,V,W, a, b,m0,C0

Initial information: (θ0)← N[m0,C0], j = 1;

System equation: (θj)← N (Gjθj−1,W) to j = 2, . . . , J;

Structure equation: (λij)← N (F′iθj,V);

Observation equation: yij ← Po(exp(λij));

The true times t∗i using the inverse probability method
(t∗i )← S(t) =

∫ t∗i
0 h0(u) exp(

∑J
j=1 βjξij)du;

Obtain the censored time (ci) using exponential distribution;

Calculate the observed time (ti, di) (ti; di)← min(t∗i , ci); I(t∗i ≤ ci);

Return y, t, d

Pamela Ch. Solano (UFRJ) FNE33 / CLATSE13 October 4, 2018 15 / 23



Simulation results: Results based on 1000 simulated data
sets. Gompertz baseline hazard exp{a + bt}. Gamma
Process vs Log Normal

0
1

2
3

4
5

6
7

(0.0-1.37] (1.37 -2.75] (2.75-4.13] (4.13-5.51] (5.51-6.88]

Follow-up time (in months)

h
0
=

e
x
p
(a

0
+

a
1
t)

n 100 K 5

0
1

2
3

4
5

6
7

(0.0-1.37] (1.37 -2.75] (2.75-4.13] (4.13-5.51] (5.51-6.88]

Follow-up time (in months)

h
0
=

e
x
p
(a

0
+

a
1
t)

n 50 K 5

Pamela Ch. Solano (UFRJ) FNE33 / CLATSE13 October 4, 2018 16 / 23



Bias (multiply by 100)
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Liver: Cirrhosis data set

The data are taken from Andersen(1993)(p. 19) and were analyzed in
Henderson e Diggle (2002).

longitudinal observations of prothrombin index,

For 488 patients from a controlled trial into prednisone treatment of liver
cirrhosis.

Time-to-event information time of death (years) and associated
censoring indicator
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Liver:Baseline
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Figure: M1: proposed; M2: Rizopoulos (2016); M3: Henderson et al. (2000)

Pamela Ch. Solano (UFRJ) FNE33 / CLATSE13 October 4, 2018 19 / 23



Prothrombin index level

Follow-up Time (in months)

P
ro

th
ro

m
b

in
 in

d
e

x

m11 m21 m31 m41 m51 m61 m71 m81 m91 m101 m111 m121 m131 m141 m151 m161 m171

6
.0

0
2

4
.8

9
4

3
.7

8
6

2
.6

7
8

1
.5

6
1

0
0

.4
4

1
1

9
.3

3
1

3
8

.2
2

1
5

7
.1

1
1

7
6

.0
0

M1

Figure: M1: proposed; M2: Rizopoulos (2016); M3: Henderson et al. (2000)
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Table: Comparison of Bayesian model selection methods for the fully dynamic joint
model considering Gamma Process (GP) compared to standard joint model using the
package Rizopoulos (2016).(Metrics divided by 100).

DIC pD LPML ∆LPMLSurv ∆DICSurv ∆pDSurv

Fd (GP) 346.333 330.791 -166.552 -24.304 44.674 44.614
SRE1 346.981 9.756 -175.249 - - -

1Rizopoulos (2016)
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Conclusion

Relaxed parametric distributional assumptions for the survival process
and modeling the relative hazards using a new semi-parameter model;

Modeling structure dependence between hazard increments and
longitudinal level has been discussed here;

The two possibilities to h0 are very well development both are robust
with respect to the assumptions for the random effects distribution;

Dynamic models provide great flexibility in modeling the longitudinal
measurement because with our longitudinal model, there is no restriction
on polynomial’s order;

Model comparisons via DIC and LPML decomposition;

Different link components between sub-models ξi.
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