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Motivation

@ Not all participants will react equally to an intervention
@ Characterizing this heterogeneity in intervention effects is key to

improving patients outcomes
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Goal

To assess the performance of Bayesian inference across diverse data
conditions, with an emphasis on their capacity to handle heterogeneity,

non-linearity, and high-dimensionality in the estimation of individual

treatment effects.
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-
The predicted individual treatment effects (PITE)
framework

@ PITE estimates individual treatment effects.
@ PITE consists of the difference between experimental(E) and control

(C) prediction for each individual (Jaki et al. 2024).

PITE;, = fp(X;) — fo (X)), f(+) is a predictor

I Challenge

@ PITE is unobserved.
@ The best method to estimate the PITE is not necessarily the
best fitted model.
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Bayesian approches

@ Dimensionality

Bayesian Ridge Regression (“bridge”), Spike and Slab Regression
(“spikeslab™), The Bayesian Lasso (“blasso”).

I Complex outcomes

Bayesian Generalized Linear Model (“bayesglm”), Bayesian Regular-
ized Neural Networks (“brnn”).

3 .
1 Tree Regression

Bayesian Additive Regression Trees (“bartMachine”) (Lamont et al.
2016)
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Regressions approches applied

Heterogeneity Linear Non_Linear Overfitting Regularization Tree_Regression

The lasso (lasso)-
The Bayesian Lasso (blasso) -

Spike and Slab Regression (spikeslab)-

Ridge (ridge) -

Random Forest (rf)-

Quantile Random Forest (qrf) -

Projection Pursuit Regression (ppr)-

Principal Component Analysis (pcr) -

Polynomial Kernel Regularized Least Squares (krlsPoly) -
Penalized Linear Regression (penalized) -

Partial Least Square (pls)-

Non-Negative Least Squares (nnls) -

Im with leapBackward (leapBackward)-

Im with Forward (leapForward) -

Im Stepwise (leapSeq)-

Linear Regression with Stepwise Selection (ImStepAIC)-
Linear Regression (Im)-

GLM with Stepwise Feature Selection (gimStepAIC) -
Generalized Linear Model (gim)-

Elasticnet (enet) -

Cubist (cubist) -

CART (rpart2)-

Boosted Tree-shrinkage (bstTree) -

Boosted Tree-Boost number (blackboost) -

Boosted Linear Model (BstLm)-

Boosted Generalized Linear Model (gimboost)-
Bayesian Ridge Regression Model Averaged (blassoAveraged) -
Bayesian Ridge Regression (bridge) -

Bayesian Regularized Neural Networks (brnn)-
Bayesian Generalized Linear Model (bayesgim)-
Bayesian Additive Regression Trees (bartMachine) -
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Metrics

@ The risk (% Expected Prediction Squared Error)

i=n

1
— ) (tPITE, — PITE,)?
n =1

@ Sensitivity (Detect PITE direction)

Same Direction, =1, if tPITE; x PITE; >0

true tPITE; and estimate PITE,.
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Data generation mechanism 1

e Sample size n = 40, 70, 100, 300, 400, 500, 1000,1200,1500 with
allocation ratio 1:1 (no = np = n/2).
y=Xp+tZy+e e~ N(0,1)

o t € (0,1) = benefit Z~
Leave-one-out cross-validation for validation

@ Normal, Linear, Independent
@ Normal, Linear, Interactions
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n = 500
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Data generation mechanism 2

@ Z Normal, Linear, High correlations (up to 0.5)

Z Normal, Linear, Low correlations (up to 0.3)
e Z ~ UJ0.1,0.5], Non-linear. Benefit: Z,7v,/(Zy+ 75)

e Z ~ U[0.1,0.5], Non-linear. Benefit: %
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n = 500

Linear, High Correlation Non-linear, Simple
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Conclusions

@ This work evidences potential approaches for different contexts.
@ An analyst should know what characteristics their dataset presents.
@ For each situation sensitivity varies little for different methods.

@ Risk is more variable.

Some methods benefit more from smaller sample size.

@ Leave complex methods for large sample size.
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