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Motivation

not all participants will react equally to an intervention

Characterizing this heterogeneity in intervention effects is key to
improving patients outcomes.
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Objective

to estimate Individual Treatment Effects.

To compare state-of-the-art Statistical models and Machine Learning
algorithms.
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The predicted individual treatment effects (PITE)
framework

PITE is a method to estimate individual treatment effects.

PITE consists of the difference between experimental(E) and
control (C) prediction for each individual [Jaki et al., 2024].

PITEi = fE (X i )− fC (X i ), f (·) is a predictor
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The predicted individual treatment effects (PITE)
framework

challenge

PITE is unobserved.
The outcome is observed for a given patient only under either the
experimental(E) fE (x i ) or control (C) condition fC (x i )

a natural question

Which method is the best to estimate PITE?
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Can any approach for prediction be applied?

Predictive models should address

population heterogeneity,

complex structures (linear/non-linear)

and high-dimensionality [Lamont et al., 2016].
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Can any approach for prediction be applied?

important!

The best method to estimate the PITE is not necessarily the best
fitted model.

An essential part is to delineate this heterogeneity based on the
baseline covariates (features).
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Regressions approaches applied

Heterogeneity Linear Non_Linear Overfitting Regularization Tree_Regression

Bayesian Additive Regression Trees (bartMachine)
Bayesian Generalized Linear Model (bayesglm)

Bayesian Regularized Neural Networks (brnn)
Bayesian Ridge Regression (bridge)

Bayesian Ridge Regression Model Averaged (blassoAveraged)
Boosted Generalized Linear Model (glmboost)

Boosted Linear Model (BstLm)
Boosted Tree−Boost number (blackboost)

CART (rpart2)
Cubist (cubist)

Elasticnet (enet)
Generalized Linear Model (glm)

GLM with Stepwise Feature Selection (glmStepAIC)
Linear Regression (lm)

Linear Regression with Stepwise Selection (lmStepAIC)
lm Stepwise (leapSeq)

lm with Forward (leapForward)
lm with leapBackward (leapBackward)

Non−Negative Least Squares (nnls)
Partial Least Square (pls)

Penalized Linear Regression (penalized)
Polynomial Kernel Regularized Least Squares (krlsPoly)

Principal Component Analysis (pcr)
Projection Pursuit Regression (ppr)

Quantile Random Forest (qrf)
Random Forest (rf)

Ridge (ridge)
Spike and Slab Regression (spikeslab)

Supervised Principal Component Analysis (superpc)
The Bayesian Lasso (blasso)

The lasso (lasso)
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Metrics

Sensitivity (Detect PITE direction)

Same Directioni =

{
1 if tPITEi × PITEi > 0

−1 otherwise

true tPITEi and estimated PITEi .

1

n

n∑
i=1

1 tPITEi×PITEi>0

For each method, calculate the proportion of individuals whose estimated
PITE have the same direction as the true PITE.
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Metrics

Risk (Expected Squared Error)

1

n

n∑
i=1

(tPITEi − PITEi )
2 × 100
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Data generation mechanism

Sample size n = 40, 70, 100, 300, 400, 500, 1000,1200,1500 with
allocation ratio 1:1 (nC = nT = n/2).

y = Xβ + tZγ + ϵ, ϵ ∼ N(0, 1)

t ∈ (0, 1) ⇒ benefit Zγ

Leave-one-out cross-validation for validation

Z Normal, Linear, Independent

Z Normal, Linear, Interactions

Z Normal, Linear, Low correlations (up to 0.3)

Z Normal, Linear, High correlations (up to 0.5)

Z ∼ U[0.1, 0.5], Non-Linear. Benefit: Z1γ1/(Z2 + γ2)

Z ∼ U[0.1, 0.5], Non-Linear. Benefit: log(Z1)γ0
Z1

γ2−γ3
√
Z2+2
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Linear, no Interaction
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Linear, with Interaction

nnls
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Linear, low Correlation
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Linear, high Correlation
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No-Linear, Simple
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No-Linear, Complex
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Difficult cases Non-linear Complex n = 500

only one model captures the PITE direction
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Difficult cases Non-linear Complex n = 1000

only one model captures the PITE direction
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Conclusions

This work evidences potential approaches for different contexts.

An analyst should know what characteristics their dataset presents.

Risk is more variable.

RF approaches perform poorly in terms of risk across non-trivial
scenarios.

Effectiveness of Regularization in high-correlation scenarios.

Methods based on trees (blackboost, bartMachine, rpart2) present
typically low risk in non-linear cases, while linear approaches struggle
with risk in simple non-linear data.

Leave complex methods for large sample sizes.
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