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Motivation

@ not all participants will react equally to an intervention
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@ not all participants will react equally to an intervention

o Characterizing this heterogeneity in intervention effects is key to
improving patients outcomes.
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to estimate Individual Treatment Effects.

To compare state-of-the-art Statistical models and Machine Learning
algorithms. J
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The predicted individual treatment effects (PITE)

framework

o PITE is a method to estimate individual treatment effects.

@ PITE consists of the difference between experimental(E) and
control (C) prediction for each individual [Jaki et al., 2024].

PITE; = fe(X;) — fc(X)), f(-) is a predictor
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The predicted individual treatment effects (PITE)
framework

challenge

PITE is unobserved.
The outcome is observed for a given patient only under either the
experimental(E) fz(x;) or control (C) condition fc(x;)

a natural question
Which method is the best to estimate PITE?
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Can any approach for prediction be applied?

Predictive models should address

@ population heterogeneity,
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Can any approach for prediction be applied?

Predictive models should address
@ population heterogeneity,

@ complex structures (linear/non-linear)
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Can any approach for prediction be applied?

Predictive models should address
@ population heterogeneity,
@ complex structures (linear/non-linear)

@ and high-dimensionality [Lamont et al., 2016].
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Can any approach for prediction be applied?

@ The best method to estimate the PITE is not necessarily the best
fitted model.

@ An essential part is to delineate this heterogeneity based on the
baseline covariates (features).
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Regressions approaches applied

Heterogeneity Linear Non_Linear Overfitting Regularization Tree_Regression

The lasso (lasso)-

The Bayesian Lasso (blasso)-

Supervised Principal Component Analysis (superpc)-
Spike and Slab Regression (spikeslab)-

Ridge (ridge)-

Random Forest (rf)-

Quantile Random Forest (qrf)-

Projection Pursuit Regression (ppr)-

Principal Component Analysis (pcr)-

Polynomial Kernel Regularized Least Squares (krlsPoly)-
Penalized Linear Regression (penalized)-

Partial Least Square (pls)-

Non-Negative Least Squares (nnls)-

Im with leapBackward (leapBackward)-

Im with Forward (leapForward)-

Im Stepwise (leapSeq)-

Linear Regression with Stepwise Selection (ImStepAIC)-
Linear Regression (Im)-

GLM with Stepwise Feature Selection (gimStepAIC)-
Generalized Linear Model (glm)-

Elasticnet (enet)-
Cubist (cubist)-
CART (rpart2)-

Boosted Tree-Boost number (blackboost)-

Boosted Linear Model (BstLm)-

Boosted Generalized Linear Model (gimboost)-

Bayesian Ridge Regression Model Averaged (blassoAveraged)-
Bayesian Ridge Regression (bridge)-

Bayesian Regularized Neural Networks (brnn)-

Bayesian Generalized Linear Model (bayesglm)-

Bayesian Additive Regression Trees (bartMachine)-
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@ Sensitivity (Detect PITE direction)

1 if tPITE; xPITE; >0

Same Direction; = ]
—1 otherwise

true tPITE; and estimated PITE;.

1 n
=D L {PITEPITE >0
i=1

For each method, calculate the proportion of individuals whose estimated
PITE have the same direction as the true PITE.
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o Risk (Expected Squared Error)

1 n
- ) (tPITE; — PITE;)? x 100
i=1
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Data generation mechanism

Sample size n = 40, 70, 100, 300, 400, 500, 1000,1200,1500 with
allocation ratio 1:1 (nc = nt = n/2).

y=XB+tZv+e e~ N(0,1)
t € (0,1) = benefit Z

Leave-one-out cross-validation for validation

@ Z Normal, Linear, Independent
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Data generation mechanism

Sample size n = 40, 70, 100, 300, 400, 500, 1000,1200,1500 with
allocation ratio 1:1 (nc = nt = n/2).

y=XB+tZv+e e~ N(0,1)
t € (0,1) = benefit Z

Leave-one-out cross-validation for validation

@ Z Normal, Linear, Independent

o Z Normal, Linear, Interactions
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Data generation mechanism

Sample size n = 40, 70, 100, 300, 400, 500, 1000,1200,1500 with
allocation ratio 1:1 (nc = nt = n/2).

y=XB+tZv+e e~ N(0,1)
t € (0,1) = benefit Z

Leave-one-out cross-validation for validation

@ Z Normal, Linear, Independent
@ Z Normal, Linear, Interactions

e Z Normal, Linear, Low correlations (up to 0.3)
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Data generation mechanism

Sample size n = 40, 70, 100, 300, 400, 500, 1000,1200,1500 with
allocation ratio 1:1 (nc = nt = n/2).

y=XB+tZv+e e~ N(0,1)

t € (0,1) = benefit Z

Leave-one-out cross-validation for validation

@ Z Normal, Linear, Independent
@ Z Normal, Linear, Interactions
e Z Normal, Linear, Low correlations (up to 0.3)

e Z Normal, Linear, High correlations (up to 0.5)
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Data generation mechanism

Sample size n = 40, 70, 100, 300, 400, 500, 1000,1200,1500 with
allocation ratio 1:1 (nc = nt = n/2).

y=XB+tZv+e e~ N(0,1)

t € (0,1) = benefit Z~

Leave-one-out cross-validation for validation

@ Z Normal, Linear, Independent

Z Normal, Linear, Interactions

Z Normal, Linear, Low correlations (up to 0.3)

Z Normal, Linear, High correlations (up to 0.5)

Z ~ U[0.1,0.5], Non-Linear. Benefit: Z171/(Z2 + 72)
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Data generation mechanism

Sample size n = 40, 70, 100, 300, 400, 500, 1000,1200,1500 with
allocation ratio 1:1 (nc = nt = n/2).

y=XB+tZv+e e~ N(0,1)

t € (0,1) = benefit Z~

Leave-one-out cross-validation for validation

@ Z Normal, Linear, Independent

Z Normal, Linear, Interactions

Z Normal, Linear, Low correlations (up to 0.3)

Z Normal, Linear, High correlations (up to 0.5)

Z ~ U[0.1,0.5], Non-Linear. Benefit: Z171/(Z2 + 72)

i it~ 1og(Z1)r
Z ~ U[0.1,0.5], Non-Linear. Benefit: ya I,
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Linear, no Interaction
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Linear, with Interaction
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Linear, low Correlation
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high Correlation
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No-Linear,
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No-Linear, Complex
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Difficult cases Non-linear Complex n = 500

only one model captures the PITE direction
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Difficult cases Non-linear Complex n = 1000

only one model captures the PITE direction
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Conclusions

@ This work evidences potential approaches for different contexts.
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Conclusions

@ This work evidences potential approaches for different contexts.
@ An analyst should know what characteristics their dataset presents.

@ Risk is more variable.

@ RF approaches perform poorly in terms of risk across non-trivial
scenarios.
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Conclusions
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Effectiveness of Regularization in high-correlation scenarios.
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Conclusions

@ This work evidences potential approaches for different contexts.

@ An analyst should know what characteristics their dataset presents.

@ Risk is more variable.

@ RF approaches perform poorly in terms of risk across non-trivial
scenarios.

o Effectiveness of Regularization in high-correlation scenarios.

@ Methods based on trees (blackboost, bartMachine, rpart2) present
typically low risk in non-linear cases, while linear approaches struggle
with risk in simple non-linear data.
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Conclusions

@ This work evidences potential approaches for different contexts.

@ An analyst should know what characteristics their dataset presents.

@ Risk is more variable.

@ RF approaches perform poorly in terms of risk across non-trivial
scenarios.

o Effectiveness of Regularization in high-correlation scenarios.

@ Methods based on trees (blackboost, bartMachine, rpart2) present
typically low risk in non-linear cases, while linear approaches struggle
with risk in simple non-linear data.

@ Leave complex methods for large sample sizes.
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